2 research outputs found

    Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli

    Get PDF
    The field of metabolic engineering has the potential to produce a wide variety of chemicals in both an inexpensive and ecologically-friendly manner. Heterologous expression of novel combinations of enzymes promises to provide new or improved synthetic routes towards a substantially increased diversity of small molecules. Recently, we constructed a synthetic pathway to produce d-glucaric acid, a molecule that has been deemed a “top-value added chemical” from biomass, starting from glucose. Limiting flux through the pathway is the second recombinant step, catalyzed by myo-inositol oxygenase (MIOX), whose activity is strongly influenced by the concentration of the myo-inositol substrate. To synthetically increase the effective concentration of myo-inositol, polypeptide scaffolds were built from protein–protein interaction domains to co-localize all three pathway enzymes in a designable complex as previously described (Dueber et al., 2009). Glucaric acid titer was found to be strongly affected by the number of scaffold interaction domains targeting upstream Ino1 enzymes, whereas the effect of increased numbers of MIOX-targeted domains was much less significant. We determined that the scaffolds directly increased the specific MIOX activity and that glucaric acid titers were strongly correlated with MIOX activity. Overall, we observed an approximately 5-fold improvement in product titers over the non-scaffolded control, and a 50% improvement over the previously reported highest titers. These results further validate the utility of these synthetic scaffolds as a tool for metabolic engineering.United States. Office of Naval Research (Young Investigator Program, Grant No. N000140510656)Synthetic Biology Engineering Research CenterNational Science Foundation (U.S.) (Grant No. EEC-0540879)National Science Foundation (U.S.) (Grant No. CBET-0756801

    Improvement of D-glucaric acid production in Escherichia coli

    No full text
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemical Engineering, 2014.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Some pages printed in landscape orientation. Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (pages 133-145).D-glucaric acid is a naturally occurring compound which has been explored for a plethora of potential uses, including biopolymer production, cancer and diabetes treatment, cholesterol reduction, and as a replacement for polyphosphates in detergents. This molecule was identified in 2004 as a "Top Value-Added Chemical from Biomass" by the U.S. Department of Energy (Werpy and Petersen, 2004), implying that production of D-glucaric acid could be economically feasible if biomass were used as a feedstock. A biosynthetic route to D-glucaric acid from D-glucose has been constructed in E. coli by our group (Moon et al., 2009b), and the goal of this thesis has been to improve the economic viability of this biological production route through improvements to pathway productivity and yield. One part of this thesis involved the application of metabolic engineering strategies towards improving D-glucaric acid productivity. These strategies targeted MIOX, which had been identified previously as the least active pathway enzyme. Directed evolution of MIOX led to the isolation of a 941 bp DNA fragment which increased D-glucaric acid production 65% from a myo-inositol feed. Fusion of MIOX to SUMO, a eukaryotic post-translational protein tag, significantly increased soluble expression and stability, resulting in a 75% increase in D-glucaric acid production from a myo-inositol feed. A second part of this thesis attempted to apply synthetic biology strategies towards improving pathway productivity. Manual, delayed expression of MIOX via time-resolved addition of chemical inducers was shown to improve productivity approximately five-fold. However, inducers are generally too costly for use in industrial production processes, so we attempted to develop genetic circuits which could delay MIOX expression autonomously, eliminating the need for costly chemical inducers. Although the attempts to create robust, controllable genetic timers in this thesis were unsuccessful, these attempts provided significant insight into limitations currently preventing widespread application of synthetic biology devices to metabolic engineering problems. A third part of this thesis explored strain engineering as a strategy for improving the yield of D-glucaric acid on D-glucose. Deletion of pgi and zwf was demonstrated to prevent E. coli from consuming D-glucose as well as eliminate catabolite repression effects in the presence of D-glucose. Finally, both D-glucaric acid productivity and yield were shown to be increased significantly in this [Delta]pgi [Delta]zwf strain. Overall, this thesis reports significant strides towards commercially viable titers of D-glucaric acid as well as interesting avenues of research for further pathway improvements.by Eric Chun-Jen Shiue.Ph. D
    corecore